
Project overview
Engineers from Comarch Software and Hardware Services unit are masters of embedded systems, especially
when it comes to wireless connectivity. This is thanks to our long term strategy of technical trainings and
mentoring, knowledge sharing and research and development work. We follow the newest trends on the
market and we play an active part in bringing the technology to the people. As a result, we are not only able to
build our own successful products, but also offer services and consultancy to the customers all around the
world – no matter how challenging and innovative the task is.

Our recent R&D work focused on integrating Bluetooth Low Energy (BLE) stack to Zephyr OS. We believe that
results of such work (also for different wireless protocols like Ultra-Wideband) would bring any embedded
system to a higher level of performance and quality.

Case Study

Bluetooth stack integration
with Zephyr OS

Why Zephyr?
The Zephyr Project is an open-source
initiative hosted by the Linux Foundation,
focused on developing a lightweight,
modular, and secure real-time operating
system (RTOS) for resource-constrained
devices. It is designed to meet the
growing needs of the Internet of Things
(IoT), embedded systems, and edge
computing applications. Zephyr is
suitable for a wide range of devices,
from simple microcontrollers to more
complex systems, making it a versatile
and scalable solution.

Security: Zephyr places a
strong emphasis on security,
incorporating features like
secure boot, trusted execution
environments, and regular
security audits. This focus
helps address the critical
need for safe and reliable IoT
solutions in industries such as
healthcare or automotive.

Connectivity: It includes
support for a wide array of
communication protocols,
such as Bluetooth, Wi-Fi,
Ethernet, Thread, Zigbee, and
LoRa, enabling seamless
integration into connected
ecosystems.

Open Source Community:
Being an open-source project,
Zephyr benefits from
contributions by a global
community of developers,
technology companies, and
academic institutions. This
collaboration fosters
innovation, improves quality,
and provides extensive
documentation and support.

Real-Time Capabilities: With
its RTOS features, Zephyr
ensures predictable and low-
latency responses, critical for
time-sensitive applications
such as robotics, industrial
automation, and sensor
networks.

Cross-Architecture Support:
The project supports multiple
hardware architectures,
including ARM, x86, RISC-V,
ARC, and others, ensuring
portability across diverse
platforms. This broad
compatibility enables
widespread adoption in
embedded and IoT
environments.

Scalability and Flexibility:
Zephyr is highly scalable,
allowing developers to
customize the OS by selecting
only the necessary
components. This modularity
makes it ideal for devices
with varying hardware
capabilities, from low-power
sensors to advanced industrial
controllers.

BLE Host integration work
The objective of this project was to develop a versatile BLE Host environment capable of facilitating seamless
transitions between various versions and implementations of BLE Host. This initiative aimed to enhance
flexibility and adaptability in BLE development. Our team focused on integrating an external Open Source BLE
Host (shared publicly by Packetcraft) into the Zephyr project, enabling its usage within BLE sample applications.

Translation layer

The idea of creating a translation layer
stems from the differences between various
Host implementations. While their purpose
is the same, they achieve it in different
ways. This has created a strong need for an
additional layer that acts as a bridge
between the Application Layer and the
chosen Host Layer. To address this, we
decided to design a translation layer that
ensures consistent results regardless of the
Host being used. Simple Zephyr Bluetooth
API calls are translated into specific Host
API commands, creating the necessary
environment for Host Layer tools such as
ATT, SMP, and others.

Scope of work and key activities

Porting the External Host: The external BLE Host was integrated into the Zephyr project as a component of the
Zephyr Bluetooth subsystem. This required modifications to build system files, including CMakeLists and
configuration files, to ensure smooth transition.

Host Selection Flexibility: We introduced a mechanism that allows users to choose which BLE Host to use
when building applications. Developer can now select during compilation process either the default BLE Host
provided by Zephyr or the newly integrated external stack, offering greater customization.

Translation Layer Development: A dedicated translation layer was implemented to facilitate sample application
compatibility with multiple BLE Hosts. This layer incorporates conditional compilation to dynamically adjust
based on the selected Host.

HCI Driver Integration: The imported BLE Host was successfully integrated with Zephyr’s Host Controller
Interface (HCI) drivers, ensuring seamless communication and functionality.

CI/CD Pipeline Implementation: A robust Continuous Integration/Continuous Deployment (CI/CD) pipeline was
created to test builds across different configurations, ensuring reliability and consistency. One of the pipelines
run PTS qualification tests. The other measured current consumption during streaming and usual stack states.

Demo Application Development: To demonstrate the capabilities of the dual-host environment, a couple of
sample applications were prepared, showcasing the functionality such as connection, advertising and
broadcasting of both the original Zephyr BLE Host and the integrated external one. We run the BLE audio
example with the new Host and nRF5340 Audio DK and checked unidirectional and bidirectional streaming with
Google Pixel 7.

Challenges during development

Certain components of the integrated Packetcraft’s Host initially relied on external drivers for their operation. To
ensure seamless integration within the Zephyr environment, these external drivers were replaced with equivalent
Zephyr drivers. This replacement process required careful adaptation to ensure compatibility and maintain the
functionality of this Host within the Zephyr framework. Another key consideration during the integration was
memory usage. Memory is a critical resource in embedded systems, and the imported Host had a different
construction and resource management approach compared to the Zephyr Host. Packetcraft’s implementation is
based on Memory Pools being allocated on Heap during initialization stage, while Zephyr Host implementation
is more focused on Heap available for each thread and dynamic allocation. These differences necessitated
modifications to the file integration process to optimize memory utilization and align with the constraints and
expectations of the Zephyr environment, such as adjusting Memory Pools usage to available thread heap size.
These adjustments were vital to achieving efficient and reliable performance of the integrated Host.

Further development process

The imported Host relies on its own set of resources to perform various operations essential for embedded
systems, such as memory allocation, queue management, and other related functionalities. These built-in
mechanisms, while functional, could be replaced or adapted to utilize the existing tools and utilities provided by
Zephyr. This approach would not only enhance integration but also align the external Host with Zephyr’s
ecosystem, potentially improving consistency and maintainability. This was identified as the next step and
addressed by systematically replacing Packetcraft resources, starting with the Logging System and concluding
with Memory Pool allocation.

For more
information:

Outcome
Our team of engineers was able to successfully integrate the external Host with Zephyr OS just as planned. We
are also planning future features and improvements to put them into our R&D backlog. The knowledge gained
during development will not only improve our products, but also enhance our offerings and expertise in
delivering services. Do you want to use RTOS as a part of your implementation and environment? Zephyr is a
great choice, and with our expertise in connectivity protocols, we can help you create your new product, SDK,
Proof of concept, or anything else you need. Contact us for more info and other references now!

The integration process was challenging due to significant differences in how Hosts were designed and
structured. Each stack featured unique functionalities and architectural approaches, making the planning and
development of a translation layer both challenging and time-consuming. This translation layer was critical to
enable communication and compatibility between the sample applications and the varying Hosts. Developing it
involved a deep understanding of both Hosts architectures and the Zephyr ecosystem, as well as significant
effort to address edge cases and ensure robust operation.

technologies.comarch.com
technologies@comarch.com

https://technologies.comarch.com
mailto:technologies@comarch.com

